2 resultados para Synechococcus elongatus

em Digital Commons at Florida International University


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Long-term management plans for restoration of natural flow conditions through the Everglades increase the importance of understanding potential nutrient impacts of increased freshwater delivery on Florida Bay biogeochemistry. Planktonic communities respond quickly to changes in water quality, thus spatial variability in community composition and relationships to nutrient parameters must be understood in order to evaluate future downstream impacts of modifications to Everglades hydrology. Here we present initial results combining flow cytometry analyses of phytoplankton and bacterial populations (0.1–50 μm size fraction) with measurements of δ13C and δ15N composition and dissolved inorganic nutrient concentrations to explore proxies for planktonic species assemblage compositions and nutrient cycling. Particulate organic material in the 0.1–50 μm size fraction was collected from five stations in Northeastern and Western Florida Bay to characterize spatial variability in species assemblage and stable isotopic composition. A dense bloom of the picocyanobacterium, Synechococcus elongatus, was observed at Western Florida Bay sites. Smaller Synechococcus sp. were present at Northeast sites in much lower abundance. Bacteria and detrital particles were also more abundant at Western Florida Bay stations than in the northeast region. The highest abundance of detritus occurred at Trout Creek, which receives freshwater discharge from the Everglades through Taylor Slough. In terms of nutrient availability and stable isotopic values, the S. elongatus population in the Western bay corresponded to low DIN (0.5 μM NH 4 + ; 0.2 μM NO 3 − ) concentrations and depleted δ15N signatures ranging from +0.3 to +0.8‰, suggesting that the bloom supported high productivity levels through N2-fixation. δ15N values from the Northeast bay were more enriched (+2.0 to +3.0‰), characteristic of N-recycling. δ13C values were similar for all marine Florida Bay stations, ranging from −17.6 to −14.4‰, however were more depleted at the mangrove ecotone station (−25.5 to −22.3‰). The difference in the isotopic values reflects differences in carbon sources. These findings imply that variations in resource availability and nutrient sources exert significant control over planktonic community composition, which is reflected by stable isotopic signatures.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

An unprecedented series of ecological disturbances have been recurring within Florida Bay since the summer of 1987. Persistent and widespread phytoplankton and cyanobacteria blooms have coincided with the large scale decimation of sponge communities. One hypothesis is that the large scale loss of suspension-feeding sponges has rendered the Florida Bay ecosystem susceptible to these recurring blooms. The primary objective of this study was to experimentally evaluate the potential for suspension-feeding sponges to control nuisance phytoplankton blooms within Florida Bay prior to a large sponge die-off event. To achieve this objective, we determined the extent and biomass of the surviving sponge community in the different basins of Florida Bay. Many areas within Florida Bay possessed sponge densities and biomasses of 1 to 3 ind. m–2 or 100 to 300 g m–2 respectively. The dominant species includedSpheciospongia vesparia, Chondrilla nucula, Cinachyra alloclada, Tedania ignis and Ircinia sp., which accounted for 68% of individual sponges observed and 88% of sponge biomass. Laboratory grazing rates of these dominant sponges were experimentally determined on 4 different algal food treatments: a monoculture of cyanobacteria Synechococcus elongatus, a monoculture of the diatom Cyclotella choctawhatcheeana, a monoculture of the dinoflagellate Prorocentrum hoffmanianum, and an equal volume of the 3 monocultures combined. To estimate the impact of a mass sponge mortality event on the system-wide filtration rate of Florida Bay, we combined estimates of the current sponge biomass and laboratory sponge filtration rates with estimates of mean volumes of the sub-basins of Florida Bay. This study implies that the current blooms occurring within the central region of Florida Bay can be explained by the loss of the dominant suspension feeder in this system, and there is no need to invoke a new addition of nutrients within this region for the blooms to occur.